
Classes
Object-Oriented Programming

See Chapter 8 of the Notes

Object-oriented programming was developed in the 1980's as a
methodology that would help reduce the number of programming
errors.

Here are some of its features. All but the first of these apply to
programs we will write this semester.:

• Object-orientation helps programmers organize very large
programs.

• Object-orientation provides a discipline for working with
data, which helps prevent programs from accidentally
changing data.

• Object-orientation allows code written for one program to
be imported into another program.

• Object-orientation allows programs to hide implementation
details

The most important concept in object-oriented programming is
the idea of a class. A class is a template for the kinds of data
needed to represent some particular type of object.

For example, we might have class Person. Persons have height,
hair color, age, names, and phone numbers. In a particular
program we would restrict the data for class Person to the types
of things the program is concerned with, perhaps just name and
phone number.

An object is one instance of a class. It is a collection of particular
values for the data of the class. For example, if class Person has
data values for name and phone number, we might have a
particular object that has name "bob" and phone number "775-
8386". Another object of this class might have name "Marvin"
and phone number "775-8400".

Another important idea of object-oriented programming is that,
in addition to data, objects have functions for manipulating that
data. These functions are called the methods of the class. Just as
the class describes the data stored in its objects, the class
describes the methods that are available for the objects to work
with their data.

If the data of class Person is the name and phone number of the
person, the class might have a method that changes the person's
phone number. It might have another method for printing out all
of its data. Another method might return the value of is phone
number (so the program could ask an object for its phone
number).

This is important because it helps us localize the parts of a program
that can manipulate data elements. It is easiest to write the
functions that manipulate structures at the time you create the
structures. In addition, if a particular structure can only be modified
by its methods and the data in that structure changes unexpectedly,
it is easier to find where the change occurred because it had to be
done by calling those methods.

Programs store data in variables. The data elements of the class
are called instance variables because each instance (object) of
the class has its own copy of each of the instance variables.

For example, class Person probably has an instance variable
name. Each object of class Person (i.e., each person) has its own
name.

We won't use them a lot, but classes also have a different kind of
variable called a class variable. Some people call these static
variables. Unlike instance variables, there is only one copy of a
class variable and it is shared by all of the objects of the class.

For example, class Person might have a class variable called
PopulationSize that keeps track of the number of Person objects.
Instance variable name changes as you go from person to
person, but all persons see the same PopulationSize.

The instance variables, methods, and class variables of a class
are called the properties of the class.

Object-oriented programming uses a "dot-notation" to refer to
the properties of an object.

Suppose class Person has instance variables name and
phone_number, both of which are strings. Suppose it also has a
method myPhoneNumber() that returns the value of the
phone_number variable. If variable x holds an object of class
Person, then x.name and x.phone_number are its two instance
variables and x.myPhoneNumber() returns x's phone number.

We could write code such as
print(x.name)

or
x.name = "bob"

Here is the most confusing part of Python's terminology for
classes.

The code for a class describes the methods and instance
variables of the class. This applies to all objects of the class.
There needs to be some way to refer to the properties of a
particular object within the class. This is the role of the word
self.

The word "self" always refers to the current
object.

For example, suppose class Person now has
instance variables name and age. We might
want to have a GetOlder()method for the class
that increases the age by 1. This would apply to
any object of the class, whether it is a baby that
is one year old or a grandfather that is 81 years
old. Here is such a method:

def GetOlder(self):
self.age = self.age + 1

This essentially says "Whatever object you are
talking about, increase its age by 1."

There might be an object x whose name is "bob"
and whose age is 65 and another object y whose
name is "Mary" and whose age is 18. If we call
x.GetOlder(), then "self" in the line

self.age = self.age + 1
refers to object x. Saying x.GetOlder() ages only
object x, not all of the objects that have been
created. Saying x.GetOlder() increases "bob's" age;
y.GetOlder() increases "Mary's" age.

Notice that self is the parameter of the getOlder,
method, but no argument is passed to the method for
self.

self should be the first parameter of every method.
When calling the method we don't give an argument

for self.

self's value is the object through which the method is
called.
We would call this through an object x of the Person
class, with

x.GetOlder()

Finally, we create objects of a class by using the name of the class
as a function. For example, to make objects of class Person we
might say

x = Person()

Here is a complete program that defines and uses a class Person:

class Person:
def SetName(self, myName):

self.name = myName

def SetAge(self, a):
self.age = a

def GetOlder(self):
self.age = self.age + 1

def main():
x = Person()
x.SetName("bob")
x.SetAge(63)
x.GetOlder()
print(x.age) # this prints 64

main()

Here is a program:
class Person:

def setAge(a):
age = a

def Print():
print(age)

def main():
x = Person()
x.setAge(18)
x.Print()

main()
What will this do?

A) Not run because it doesn't know what a Person is
B) Run but crash because it doesn't say what variable age is

in setAge()
C) Crash because it doesn't say what age is in Print()
D) Run and print 18

What about this one:
class Person:

def setAge(self, a):
self.age = self.a

def Print(self):
print(self.age)

def main():
x = Person()
x.setAge(18)
x.Print()

main()
A) Crash because it doesn't know what self.a is in setAge(self, a)
B) Crash because it doesn't know what self.age is in Print(self)
C) It runs and prints 18

One final one:
class Person:

def setAge(self, a):
self.age = a

def Print(self):
print(self.age)

def main():
x = Person()
x.setAge(self, 18)
x.Print()

main()
A) Crash because it doesn't know what self is in

x.setAge(self, 18)
B) Crash because main() should have said

self.setAge(18)
C) Runs and prints 18

Here is what that program should be:

class Person:
def setAge(self, a):

self.age = a
def Print(self):

print(self.age)
def main():

x = Person()
x.setAge(18)
x.Print()

main()

